If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.25t^2+10t-10=0
a = 3.25; b = 10; c = -10;
Δ = b2-4ac
Δ = 102-4·3.25·(-10)
Δ = 230
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{230}}{2*3.25}=\frac{-10-\sqrt{230}}{6.5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{230}}{2*3.25}=\frac{-10+\sqrt{230}}{6.5} $
| 3=1×(1+r)9 | | 3512y=1 | | 3y+19=34 | | 5(2y+7y)=20 | | 6x/5x=110 | | 2^2+25x-625=0 | | 4(x+6)+3x=38 | | 4x^2-26x+28=0 | | 8x=960 | | 0.5x100=50 | | 98x-199x=5 | | x^+8=2 | | x^+-8=28 | | 18-7a=-3 | | Y=p^2+7p=6 | | Y=p^2+7p= | | 3a-1/3=5 | | 4p+7=-21 | | 2x+9=5x/24 | | 2(3-x)=-4(x+5) | | 3(-2x-5)+2x=9 | | 25x-51=4 | | X=0.05x+70 | | (752÷373)=(857÷y) | | 5/3x-17/5=4/15x | | F(2x)=3x^2+5x-1 | | 5-4x+21=-15 | | 23x÷2x-1=16 | | 4/3x+4x=2/3 | | 2/3xX=67000 | | X=05x+70 | | 20/n-20/(n-2)=4/n |